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SUMMARY 

The polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous environmental pollutants, many of which are acutely toxic, mutagenic, or 
carcinogenic. A diverse group of fungi, including Aspergiltus oehraceus, Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyees cerevisiae, and 
Syncephalastrum racemosum, have the ability to oxidize PAHs. The PAHs anthracene, benz[a]anthracene, benzo[a]pyrene, fluoranthene, fluorene, 
naphthalene, phenanthrene, and pyrene, as well as several methyl-, nitro-, and fluoro-substituted PAHs, are metabolized by one or more of these fungi. 
Unsubstituted PAHs are oxidized initially to arene oxides, trans-dihydrodiols, phenols, quinones, and tetralones. Phenols and trans-dihydrodiols may be 
further metabolized, and thus detoxified, by conjugation with sulfate, glucuronic acid, glucose, or xylose. Although dihydrodiol epoxides and other mutagenic 
and carcinogenic compounds have been detected as minor fungal metabolites of a few PAHs, most transformations performed by fungi reduce the 
mutagenicity and thus detoxify the PAHs. 

I N T R O D U C T I O N  

Polycyclic aromatic hydrocarbons are a large group of 
xenobiotic pollutants that Consist of benzene rings fused 
into various arrangements (Fig. 1). They are commonly 
released into air, soil, and water by coat mining, oil 
drilling, and the burning of wood and fossil fuels [9,10,29]. 
PAHs may contaminate fresh and dried foods exposed to 
sources of  pollution [41,66,77]; they are also produced 
during cooking by methods such as charcoal broiling 
[41,62] and pan frying [78]. 

Several PAHs and their biotransformation products 
are toxic to living cells [9,41,67]. Although naphthalene 
binds to cells of  the marine yeast Candida lipolytica and 
enhances their growth rate [37,38], it reduces the growth 
of  many soil fungi [4,71]. Other PAHs are also taken up 
by fungi [66] but their effects on fungal growth are largely 
unknown. Many PAHs are mutagenic in bacterial and 
animal cells and carcinogenic for animals [41,81]. 

A number of  comprehensive reviews have been written 
on the microbial metabolism of PAHs [9,10,29,48,49]. 
Recent reviews dealing specifically with metabolism by 
fungi include those describing the cytochromes P-450 of  
yeasts that oxidize benzo[a]pyrene [59], the degradation 
of  xenobiotic pollutants by white-rot fungi [1,6,51], and 
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the metabolism of aromatic hydrocarbons by yeasts and 
filamentous fungi [34]. Some of these fungi, such as the 
zygomycetous fungus Cunninghamella elegans, have been 
studied extensively to investigate possible pathways for 
the detoxification of environmental pollutants [9,54]. 

This article will outline the principal types of 
compounds that are usually formed during the metabo- 
lism of  PAHs by fungi and will discuss what is known 
about the toxicity of these fungal metabolites. 

METABOLITES P R O D U C E D  BY F U N G I  FROM 
PAHs 

General comments 
The PAH metabolites produced by fungi include 

phenols, trans-dihydrodiols, quinones, and tetralones 
(Fig. 2) [14,23,28]. Arene oxides have not been isolated 
from culture media but they appear to be intermediates in 
the formation of trans-dihydrodiols and phenols 
[ 11,29,34]. All of  these fungal metabolites are produced by 
reactions similar to those known in pharmacology as 
phase-1 metabolism [40]. Phase-2 metabolism [40], in 
which these metabolites are conjugated with sulfate, glu- 
curonic acid, or other moieties, also occurs in fungi [18]. 
The reactions of  either of  these phases are considered to 
be steps in detoxification if the products are less toxic than 
the original PAHs [35,65]. 

Most  of  the metabolites produced from PAHs by fungi 
are less toxic to other organisms than the parent 
compounds so that the net result is detoxification [35,65]. 
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Fig. 1. Chemical structures of representative polycyclic aromatic hydrocarbons. 

Small amounts of mutagenic and carcinogenic 
compounds, however, are formed during the fungal meta- 
bolism of a few unsubstituted and methyl-substituted 
PAHs [16,25,65]. 

Arene oxides 
The first step in the fungal metabolism of an unsubsti- 

tuted PAH is ring epoxidation by a monooxygenase en- 

zyme complex [43,44]. The product of epoxidation is an 
unstable arene oxide, such as naphthalene 1,2-oxide 
(Fig. 2) [11]. Arene oxides are immediately either hy- 
drated by epoxide hydrolase to trans-dihydrodiols or 
rearranged nonenzymatically to phenols [29,34]. The 
arene oxides have not been isolated directly from fungal 
culture media but naphthalene 1,2-oxide has been shown 
indirectly in Cunninghamella elegans by isotopic labelling 
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Fig. 2. Metabolism of naphthalene by fun~. Fig. adapted from [23]. 



experiments [ 11]. The toxicity of some arene oxides is less 
than that of the original PAHs; for example, synthetic 
benzo[a]pyrene 7,8-oxide is only about 20~o as carcino- 
genic for mice as benzo[a]pyrene [81]. 

The monooxygenase enzyme complex that catalyzes 
the formation of arene oxides generally contains an indu- 
cible, membrane-bound enzyme, cytochrome P-450 
[34,44,59]. The activity of this enzyme has been measured 
in several species, including Cunninghamella bainieri 
[43,44], C. elegans [24], Aspergillus ochraceus [42,47], and 
the yeast Saccharomyces cerevisiae [83,86,87]. Cyto- 
chrome P-450 probably occurs in most fungi. 

Multiple isozymes of cytochrome P-450 have been 
found in Aspergillus ochraceus [47] and Saccharomyces 
cerevisiae [83,86]. One of the isozymes is induced in 
S. cerevisiae by benzo[a]pyrene [83,86,87]. Microsomal 
preparations of S. cerevisiae [83,85] and A. ochraceus 
[39,42,47] hydroxylate benzo[a]pyrene, presumably via 
unstable arene oxides. Low concentrations of one of the 
isozymes are found in cells grown without benzo[a]pyrene 
[56,57,86]. However, if A. ochraceus or S. cerevisiae is 
grown in a medium containing benzo[a]pyrene, the iso- 
zyme with activity on PAHs is induced in preference to 
other isozymes of cytochrome P-450 [47,58]. 

The purified cytochrome P-450 isozyme of Saccharo- 
myces cerevisiae that is induced by benzo[a]pyrene [2,3] 
has been shown, by visible light spectrophotometry and 
tritium nuclear magnetic resonance (3H-NMR) spectro- 
scopy, to bind benzo[a]pyrene as a substrate [56,61,87]. 
The oxidation of benzo[a]pyrene has been demonstrated 
in vitro with a reconstituted monooxygenase complex 
containing purified NADPH, NADPH-cytochrome c re- 
ductase, cytochrome P-450 from S. cerevisiae, and a phos- 
pholipid [2,3,58]. 

Trans-Dihydrodiols 
Epoxide hydrolase catalyzes the addition of a water 

molecule to an arene oxide to form a trans-dihydrodiol. 
This enzyme has been found in Cunninghamella elegans 
[82] and is presumed to occur in other fungi. One or more 
trans-dihydrodiols are produced by fungi from naphtha- 
lene (Fig. 2), anthracene, phenanthrene, fluoranthene, 
benz[a]anthracene, and benzo[a]pyrene (Table 1). The 
carcinogenicity of benzo[a]pyrene trans-9,10- and 4,5- 
dihydrodiols is much lower than that of the parent 
compound, but that of the trans-7,8-dihydrodiol is nearly 
as high [81]. 

Due to the complex fused ring structures of most 
PAHs, more than one trans-dihydrodiol isomer can be 
produced metabolically. Different fungi produce different 
isomers in laboratory cultures. For instance, phe- 
nanthrene is oxidized by Cunninghamella elegans mainly 
to the trans-l,2-dihydrodiol with small amounts of the 

TABLE 1 

trans-Dihydrodiols produced from PAHs by fungi 
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Compound References 

Naphthalene trans-l,2-dihydrodiol [14,23,24,43] 
Anthracene trans-l,2-dihydrodiol [8] 
Phenanthrene trans-l,2-dihydrodiol [36] 
Phenanthrene trans-3,4-dihydrodiol [36] 
Phenanthrene trans-9,10-dihydrodiol [12,80] 
Fluoranthene trans-2,3-dihydrodiol [72] 
Benz[a]anthracene trans-3,4-dihydrodiot [35] 
Benz[a]anthracene trans-8,9-dihydrodiol [15] 
Benz[a]anthracene trans-lO,11-dihydrodiol [35] 
Benzo[a]pyrene trans-4,5-dihydrodiol [39] 
Benzo[a]pyrene trans-7,8-dihydrodiol [25,32,39] 
Benzo[a]pyrene trans-9,10-dihydrodiol [25,39] 

trans-3,4- and 9,10-dihydrodiols [12,36], but it is oxidized 
initially by the white-rot fungus Phanerochaete chryso- 
sporium to the trans-9,10- and 3,4-dihydrodiols [80]. 

Phenols 
The nonenzymatic rearrangement of a PAH arene 

oxide in solution produces one or two isomeric phenols 
[29]. For instance, naphthalene 1,2-oxide produces pre- 
dominantly 1-naphthol with a small amount of 2-naphthol 
(Fig. 2) [11,23,24]. Both 1- and 2-naphthol have been 
detected among the naphthalene metabolites of a wide 
variety of fungi [28,53,79]. The relative toxicity of naph- 
thalene and 2-naphthol has been investigated for repre- 
sentative green algae, invertebrates, and fish. For 7 out of 
the 9 aquatic species tested, naphthalene is 1.5-6.4 times 
as toxic as 2-naphthol [67]. For cyanobacteria, however, 
both 1- and 2-naphthol are much more toxic than naph- 
thalene [17]. 

Phenols are produced from naphthalene, anthracene, 
phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene 
by various fungi (Table 2). Unlike the parent compound 

TABLE 2 

Phenols produced from PAHs by fungi 

Compound References 

1-Naphthol 
2-Naphthol 
3-Hydroxyphenanthrene 
4-Hydroxyphenanthrene 
9-Hydroxyphenanthrene 
1-Hydroxypyrene 
3-Hydroxybenzo [a]pyrene 
9-Hydroxybenzo [a] pyrene 

[11,14,23,24,28,44,531 
[11,14,23,24,28,441 
[8o1 
[80] 
[801 
[30] 
[2,3,14,25,39,55,63] 
[14,25,39] 
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benzo[a]pyrene, 3- and 9-hydroxybenzo[a]pyrene de- 
monstrate low mutagenicity in the Salmonella typhimurium 
reversion assay and do not appear to be carcinogenic [81]. 

Quinones 
Several species of fungi produce 1,2- and 1,4-naphtho- 

quinone from naphthalene (Fig. 2) [28]; other quinones 
are formed during the metabolism of pyrene and 
benzo[a]pyrene (Table 3). The probable metabolic path- 
way for the production of 1,2-naphthoquinone leads from 
naphthalene trans- 1,2-dihydrodiol via 1,2-dihydroxynaph- 
thalene; similarly, the probable metabolic pathway for 
1,4-naphthoquinone leads from 1-naphthol via 1,4-dihy- 
droxynaphthalene [23]. The respective diphenol inter- 
mediates, however, have not been detected in fungal cul- 
ture media. Both 1,4- and 1,2-naphthoquinone are more 
toxic than naphthalene, at least for cyanobacteria [17]. 

Phanerochaete ehrysosporium and Cunninghamella ele- 
gans oxidize pyrene to the 1,6- and 1,8-quinones [30,52]. 
These two species and Aspergillus ochraceus also oxidize 
the carcinogen benzo[a]pyrene to the 1,6-, 3,6-, and 6,12- 
quinones [25,39,50]. One of the enzymes responsible for 
quinone formation by P. chryso~porium has been identi- 
fied; purified lignin peroxidase transforms benzo[a]py- 
rene to a mixture of all three quinones [50]. The 
benzo[a]pyrene quinones have only 3-4~o as much tu- 
mor-initiating activity for mice as benzo[a]pyrene [81]. 

Tetralones 
4-Hydroxy-l-tetralone, also designated as 4-hydroxy- 

3,4-dihydro(2H)naphthalenone (Fig. 2), is one of the me- 
tabolites produced from naphthalene by Candida lipolyti- 
ca, Cunninghamella spp., Neurospora crassa, Psilocybe spp., 
Syncephalastrum racemosum, and several other fungi 
[14,23,28]. The intermediates in tetralone formation are 
not known but they may include 1-naphthol and 1,4-naph- 
thoquinone [23,28]. 

TABLE 3 

Quinones produced from PAHs by fungi 

Compound References 

1,2-Naphthoquinone 
1,4-Naphthoquinone 
Pyrene- 1,6-quinone 
Pyrene- 1,8-quinone 
Benzo[a]pyrene-1,6-quinone 
Benzo[a]pyrene-3,6-quinone 
Benzo [a] pyrene-6,12-quinone 

[23,28] 
[23,28] 
[30,52] 
[30,52] 
[25,39,50] 
[25,39,50] 
[50] 

Dihydrodiol epoxides 
When a monooxygenase catalyzes the further 

oxidation of a PAH trans-dihydrodiol, the result is a dihy- 
drodiol epoxide (Fig. 3). Benzo[a]pyrene trans-7,8-dihy- 
drodiol 9,10-oxide, one of the minor metabolites produced 
from benzo[a]pyrene by Cunninghamella elegans [26,48], 
is the ultimate carcinogenic and mutagenic metabolite of 
benzo[a]pyrene in mammals [81]. The same fungus also 
produces benzo[a]pyrene trans-9,10-dihydrodiol 7,8- 
oxide, which is less mutagenic [27]. 

Dihydrodiol epoxides can be metabolized further by 
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Fig. 3. Formation and hydrolysis of a carcinogenic dihydrodiol 
epoxide, benzo[a]pyrene trans-7,8-dihydrodiol 9,10-oxide, by 

C. elegans. Fig. adapted from [26]. 



epoxide hydrolase to tetrahydrotetraols, which are less 
mutagenic than the dihydrodiol epoxides [26,27]. 

Conjugates 
During phase-2 metabolism [40], phenols and trans 

-dihydrodiols derived from PAHs are detoxified by conju- 
gation with another molecule [18,65]. The conjugates pro- 
duced by fungi, which are generally nontoxic to mammals 
[18] and nonmutagenic by the Salmonella typhimurium 
reversion assay [35], include sulfates, glucosides, glucu- 
ronides, and xylosides (Fig. 4). The toxicity of these conju- 
gates to fungi has not been investigated but probably is 
low. 

Sulfate conjugation, which is a common mammalian 
detoxification reaction for PAHs [81], is also performed 
by fungi [ 18]. Cunninghamella elegans produces 1-naphthyl 
sulfate (Fig. 4) and 1-anthryl sulfate from naphthalene 
and anthracene, respectively [8,18]. It also produces sul- 
fate conjugates from benz [a]anthracene and benzo[a]py- 
rene [25,35]. 

Glucuronic acid conjugates of PAHs are detoxification 
products of both mammals and fungi [18,81]. A UDP-glu- 
curonyltransferase in CunninghameIla elegans, which un- 
like the corresponding membrane-bound enzyme of mam- 
reals is soluble, catalyzes the conjugation of 3-hydroxy- 
benzo[a]pyrene with glucuronic acid [25,82]. The same 
fungus also produces glucuronides from naphthalene 
(Fig. 4) and benz[a]anthracene [15,18,35]. 
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Fig. 4. Conjugates of polycyclic aromatic hydrocarbons with 
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Glucose conjugates are produced from PAHs by at 
least two fungi. Cunninghamella elegans and Phanerochaete 
chrysosporium form glucosides from phenanthrene (Fig. 4) 
[12,80], fluoranthene [72], and pyrene [30]. 

Xylose conjugates have recently been found among the 
metabolites of Rhizoctonia solani grown with anthracene 
(unpublished results). Results from our laboratory have 
tentatively identified two different isomeric xyloside con- 
jugates of anthracene trans- 1,2-dihydrodiol and a xyloside 
conjugate of 1-hydroxyanthracene (Fig. 4). 

METABOLISM OF PAHs BY LIGNIN-DEGRADING 
FUNGI 

White-rot fungi, which degrade lignin and cellulose in 
wood, produce nonspecific extracellular enzymes that can 
oxidize xenobiotics during growth on carbohydrates such 
as glucose or cellulose [1,6,51]. Phanerochaete chrysospo- 
rium and Trametes versicolor metabolize 14C-labelled 
phenanthrene to 14CO2 and several unidentified 
compounds [5,69]. Cultures of P. chrysosporium also pro- 
duce 14CO 2 and unidentified metabolites from 14C- 
labelled fluorene [5,46], pyrene [5,52], and benzo[a]py- 
rene [7,50,76]. 

Lignin peroxidase appears to be responsible for the 
initia ! steps in the oxidation by white-rot fungi of some, 
but not all, of these PAHs [5-7]. The purified lignin per- 
oxidase isozyme H8 from Phanerochaete ehrysosporium 
catalyzes the formation of quinones from anthracene, 
benz [a] anthracene, pyrene, perylene, and benzo[a]pyrene 
[50,52,76]. Since phenanthrene is oxidized by cultures of 
P. chrysosporium [5,69,80] but not by purified lignin per- 
oxidase H8 [52], other enzymes, such as monooxy- 
genases, must also be involved in the metabolism of some 
PAHs by white-rot fungi [80]. 

METABOLITES PRODUCED BY FUNGI FROM 
METHYLATED PAHs 

Of the large number of methyl-substituted PAHs, only 
two will be considered here. These are 3-methyl- 
cholanthrene and 7,12-dimethylbenz [a] anthracene 
(Fig. 5), which have extremely high mutagenicity and ear- 
cinogenicity [16,65]. 

3-Methylcholanthrene is transformed by Cunning- 
hamella elegans to secondary alcohols and ketones. These 
inelude 1- and 2-hydroxy-3-methylcholanthrene and 1- 
and 2-keto-3-methylcholanthrene [16]. Trace amounts of 
a carcinogenic metabolite, 1-hydroxy-3-methylcholan- 
throne trans-9,10-dihydrodiol, are also produced [16]. 

7,12-Dimethylbenz[a]anthracene is metabolized by 
several fungi. Penicillium notatum, Syncephalastrum ra- 
cemosum, and Cunninghamella elegans hydroxylate 7,12- 



58 

8 2 

5 6 ~ 4  
4 10 10 

11 

21 I1 OH 3 

7,12-Dimethyl- 
3-Methylcholanthrene benz[a]anthracene 

Fig. 5. Chemical structures of two methyl-substituted PAHs. 

dimethylbenz [a] anthracene at either or both of the 
methyl groups [64,65,88]. However, C. elegans also 
oxidizes it to 7,12-dimethylbenz [a] anthracene trans-3,4- 
dihydrodiol, which is highly carcinogenic [64,65,84]. Peni- 
cillium chrysogenum and a Mucor sp. transform 7,12-dime- 
thylbenz[a]anthracene to phenols [65]. Unlike the other 
four fungi tested, S. racemosum detoxifies 7,12-dimethyl- 
benz[a]anthracene by conjugation with glucuronic acid 
and sulfate [65]. 

Fungi also metabolize several other methylated 
[13,20-22,31,45], nitrated [19,68,75], and fluorinated 
[33] PAHs. In general, the reactions are similar to those 
already discussed. 

MUTAGENICITY OF FUNGAL METABOLITES OF 
PAHs 

Some of the minor metabolites produced by fungi from 
unsubstituted and methylated PAHs are more mutagenic 
than either the parent compounds or the principal meta- 
bolites. These metabolites include benz[a]anthracene 
trans-3,4-dihydrodiol [ 15], benzo [a]pyrene trans-7,8-dihy- 
drodiol 9,10-oxide [26], 7,12-dimethylbenz[a]anthracene 
trans-3,4-dihydrodiol [65,84], and 1-hydroxy-3-methyl- 
cholanthrene trans-9,10-dihydrodiol [16]. Despite the in- 
creased mutagenicity of these minor metabolites, the bulk 
of the fungal transformation products show reduced mu- 
tagenicity [35]. 

The mutagenicity of culture media containing PAHs 
decreases gradually during fungal growth. When Cun- 
ninghamella elegans is grown in Sabouraud's medium for 
3 days in the presence of mutagens such as fluoranthene, 
benz [a] anthracene, 7,12-dimethylbenz [a] anthracene, 3- 
methylcholanthrene, or benzo[a]pyrene, the rat-liver 
-S9-mediated mutagenicity of the culture media in the 
Salmonella typhimurium reversion assay is greatly reduced 
but not totally eliminated [35,73]. In cultures of Synce- 
phalastrum racemosum with 7,12-dimethylbenz[a]anthra- 
cene, the mutagenicity decreases gradually as the 
compound is converted to glucuronide and sulfate conju- 
gates [65]. 

Although the sulfate, glucuronide, and glucoside con- 

jugated produced from PAHs by fungi are nonmutagenic 
[35,731, other microorganisms in the environment have 
hydrolytic enzymes, such as sulfatases, glucuronidases, 
and glucosidases, that may conceivably remove these con- 
jugative groups and restore toxicity. For example, certain 
bacteria have been shown to hydrolyze benzo[a]pyrene 
conjugates [70,74]. Purified/?-glucuronidase also hydro- 
lyzes the glucuronide conjugate of 3-hydroxybenzo[a]py- 
rene and increases binding to DNA [60]. For this reason, 
fungi and bacteria that cleave the aromatic rings of PAHs 
[5,29,69] should prove more useful for the bioremediation 
of toxic wastes containing PAHs than those that form 
conjugates. 

CONCLUSIONS 

Many species of fungi transform PAHs to trans-dihy- 
drodiols, phenols, quinones, tetralones, conjugates, and 
other metabolites. Although small amounts of mutagenic 
and carcinogenic metabolites are formed during the meta- 
bolism of some PAHs, most fungal transformation pro- 
ducts are less mutagenic than the original compounds. 
The utilization of selected microorganisms for the biore- 
mediation of sites contaminated with PAHs should be a 
fruitful area for future investigation. 
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